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Research Overview
Coupled Flight Dynamics, Aeromechanics, and 
Aeroacoustics Simulations
§ Linearization, stability, order reduction, control
§ Real-time aeromechanics and acoustics 
§ Real-time interactional aerodynamics 
§ Rotary-Wing Vehicles (helicopter, tiltrotors, etc.)
§ Flapping-Wing MAVs (insects, birds) 

Advanced Flight Control Systems 
§ Rotorcraft flight control systems 
§ Active noise-abatement flight control laws 
§ Active rotor vibration flight control laws 

Perception Modeling and Pilot Cueing Methods
§ Full-body haptic feedback 
§ Multimodal pilot modeling 
§ Cueing algorithms for autorotation/shipboard landing 

Simulation and Control of Shipboard Interactions

Haptic Feedback for Moon Landing
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Motivation
§ Past approaches 

q Projected screens + large motion bases
q Realistic physical cockpits
q High acquisition, maintenance, and operation 

cost
q Typically government initiatives

Vertical Motion Simulator
(NASA Ames)

Background and Motivation



Motivation
§ Past approaches 

q Projected screens + large motion bases
q Realistic physical cockpits
q High acquisition, maintenance, and operation 

cost
q Typically government initiatives

§ Advent of Virtual Reality (VR)
q Eliminates need for large projected 

screens/physical cockpit
q Reduces size and weight of motion platform
q Lower mass/inertia à Increased motion 

bandwidth and range
q Lower cost/size à Affordable for academic 

research
q 360° visual environment Brunner Elektronik NovaSim VR

Simulator

Background and Motivation



+ +

Motion-Base Simulator
§ Max payload: 660 lb (300 kg)
§ Heave: ±185 mm, ±600 mm/s
§ Surge: ±240 mm, ±600 mm/s
§ Sway: ±240 mm, ±600 mm/s
§ Roll, Pitch, Yaw: ±30 deg, ±120 

deg/s

VR/AR Headset
§ VRgineers XTAL 8K 
§ Resolution: 3840x2160 (4K) per eye
§ 180 deg field of view
§ Refresh rate: 75 hz @ 4K per eye
§ Hand Tracking

q Ultraleap Motion Rigel
q 170 deg circular viewing angle

§ Eye tracking @ 100 Hz

Full-Body Haptics
§ TESLASUIT
§ Haptic system

q 80 electrostimulation 
channels (114 electrodes)

§ Biometry (electrocardiography)
§ Motion tracking 

q IMU 9 and 6 axes
q 10 motion capture sensors

Extended Reality Flight Simulation and Control Lab



Extended Reality Flight Simulation and Control Lab

Central 
Computing Unit Simulation Unit #2Simulation Unit #1



Multi-Purpose
§ Can interface w/ MATLAB, Flightlab, Julia, etc.
§ Can simulate different cockpit graphics
Reconfigurable
§ Fixed-wing (GA + jet) + rotorcraft controls
§ Can implement motion cueing algorithms
Modular
§ Can link multiple units together
Enhanced Motion Cueing 
§ Low mass/inertia à Increased motion bandwidth 

and range
Immersive
§ VR provides 360° visual environment
§ Look-down capability
§ Pilot can see its hands and interact with cockpit
§ Haptic feedback (force-feel controls + suit + gloves)

Extended Reality Flight Simulation and Control Lab

VR motion-base simulator at 
Extended Reality Flight Simulation and Control Lab



Extended Reality Flight Simulation and Control Lab
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Versions Available  
q
q
Rotorcraft Models
q SimpleHel (UH-60, AH-1, Bell 430)

§ Minimum fidelity 
§ Quasi-static rotor dynamics

q GenHel (UH-60) 
§ Higher fidelity
§ Rotor + inflow dynamics 

q GenTR (XV-15, AW609) 
§ Higher fidelity
§ Rotor + inflow dynamics 

q GenMR (UAM/eVTOL, Co-Axial Rotorcraft) 
Fixed-Wing Aircraft Models 
q F-16 

Flight Simulation Models

Kaman K-MAX

Bell XV-15

UH-60 Black Hawk



Motivation
§ New rotorcraft configurations more complex 

qFVL and UAM
qMultiple rotors 
qHigh-level of aero interaction 
qHigh rotor RPM (UAV)

§ Rapid prototyping of diverse configurations
qMultiple rotors
qMultiple wings
qRotor-on-rotor/wing interactions

§ Close gap
qRotorcraft flight dynamics simulations
qComprehensive aeromechanics codes

§ Need for advanced flight control laws

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)
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2021 2022 2023

M-GenHel
q
q Single main rotor config
q Rotor dynamics 

§ Rigid flap + lead-lag
§ 3-state Pitt Peters (main 

rotor)
§ 1-state Bailey (tail rotor)

q Nonlinear aero 
§ Airframe 
§ Rotor blades

M-GenTR
q
q Tiltrotor config 
q Rotor dynamics 

§ Rigid flap + lead-lag
§ 3-state Pitt-Peters

q Nonlinear aero 
§ Airframe 
§ Rotor blades

M-GenMR
q
q Generic multi-rotor/wing config 
q Rotor dynamics 

§ Rigid flap
§ 3-state Pitt-Peters
§ Rotor-on-rotor/wing

interactions (CMTSVT)
q State-space free-vortex wake
q Built-in aeroacoustics solver
q Viz. of rotor/wing geometry 

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



Kaman K-MAX

Main Features
q Implemented in  
q Any number of rotors, wings, and blades
q Rotor dynamics

§ Rigid flap
§ 3-state Pitt-Peters
§ Rotor-on-rotor/wing interactions (CMTSVT)

q Wing aero
§ Lookup tables
§ Lifting line 

q Aeromechanics/Aeroacoustics
§ State-space free-vortex wake 
§ In-house aeroacoustics solver

q Linearization, trim, periodic trim routines 
q Flight control laws 

§ Dynamic Inversion (DI) auto-generated
§ Inner attitude + outer velocity loops
§ Redundant control allocation (pseudoinverse)

Bell XV-15

UH-60 Black Hawk

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



Setup and Rotorcraft Geometry 
q Any number of rotors/wings 

§ Any number of blades (up to 9)
§ Can specify number of chordwise and

spanwise elements
§ Arbitrarily oriented in space

q If data is available, setup of new rotorcraft 
takes ≈ 1 hour

q Setup via rotorcraft parameters script in 
MATLAB

q Can visualize rotor/blade geometry to check 
configuration  

Kaman K-MAX

TRV-80

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



Rotor Dynamics 
q Blade-element model 
q Rigid flap 
q 3-state dynamic inflow (Pitt-Peters)
q Rotor-on-rotor interactions 

§ State-space CMTSVT
§ Modification of Pitt-Peters matrices 
§ Computer offline based on rotors 

geometry
q Rotor-on-wing interactions

§ Hyeson
§ Lifting line 

q High-fidelity aeromechanics
§ State-space free-vortex wake 
§ W/ and w/o near-wake vortex lattice 

model  

State-Space CMTSVT
q States: 𝒙! = 𝝀"𝟏

# …𝝀"𝒏
# 𝝀$%$𝟏

# …𝝀$%$𝒏
#

§ 𝝀"𝒊
# = 𝜆𝐬𝒊𝟎𝜆𝒔𝒊𝟏𝒄𝜆𝒔𝒊𝟏𝒔 : self-induced inflow on 𝑖() rotor 

§ 𝝀$%$𝒊
# = 𝜆$%$𝒊𝟎𝜆$%$𝒊𝟏𝒄𝜆$%$𝒊𝟏𝒔 : total inflow on 𝑖() rotor 

q Self-induced inflow:    𝑴**𝝀̇+' = 𝐶 − 𝑳**,𝟏𝝀+'
§ 𝑴**, 𝑳** same as Pitt-Peters
§ 𝑭*# = 𝐶#'𝐶.'𝐶/'

q Total inflow:                        𝝀̇$%$' =
0
1(
(.𝝀$%$'−𝝀$%$')

§ 𝝀$%$' = 𝝀+'+ ∑230,25*6 𝝀78$')
q Interference inflow:          𝝀78$') = 𝐿*2𝑒,1')+𝜆+)

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



On-axis frequency-domain validation vs. flight test data 
for an XV-15  

Trim, Linearization, and Freq. Responses
q Linearization (perturbation methods) 
q Averaged trim 
q Periodic trim

§ Modified harmonic balance 
§ Based on harmonic decomposition 

q Model-order reduction 
§ Residualization
§ Recovers 9-state rigid-body dynamics 
§ Rotor states are assumed as fast decaying 

and residualized
q Freq. response

§ Possible to plot freq. responses
§ For given input-output pair 
§ On- and off-axis 
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MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



Free-Vortex Wake (undergoing integration)
q Implemented in  
q State-variable implementation

𝒓̇!" = −Ω𝑨#𝒓!" + 𝑽(𝒓!"(𝜙, 𝜁))
𝒓̇$% = −Ω𝑨#𝒓$% + 𝑽(𝒓$%(𝜙, 𝜁))

Γ̇!" = −Ω𝑨#𝚪!"
Γ̇$% = −Ω𝑨#𝚪$%

𝚪̇& =
1
𝜏'9

𝚪 𝒓& 𝜙, 𝜁 − 𝚪&

q Can choose
§ Number of rotor wake revolutions 
§ Time step

q Runs in real-time if autocoded to C/C++ via
MATLAB/Simulink coder

q Can be run one- or two-way coupled

State-Space Free-Vortex Wake (tip vortex only)

State-Space Free-Vortex Wake (near wake model)

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



Aeroacoustics Solver (undergoing integration)
q Implemented in  
q Impermeable Ffowcs Williams-Hawkings surface 

formulation 

4𝜋𝑝! 𝑥, 𝑡 =
1
𝑐"
𝜕
𝜕𝑡
2
#

𝜌"𝑐"𝑢$ + 6𝑝7𝒏 ⋅ :𝒓
𝑟Λ %&'

𝑑Σ + 2
#

6𝑝7𝒏 ⋅ :𝒓
𝑟(Λ %&'

𝑑Σ

q Marching-cubes algorithm to solve for iso-surface

Iso-surface computed with marching cubes approach Acoustic pressure validation vs. PSU-WOPWOP
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Flight Control Laws 
q Model-following control laws 
q Implemented in Simulink
q Dynamic Inversion (DI)

§ Inner-attitude loop 
§ Outer-velocity loop
§ Automatically generated across flight 

envelope à no need for gain scheduling
§ Scheduled with reduced-order linearized 

models 
q Redundant control allocation 

§ Pseudoinverse 
§ Automatically generated based on active 

effectors 
§ Based on linearized models

DI inner attitude loop

DI as applied to a SISO system

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



Current Status 
q Code validated vs. flight test data

§ UH-60 
§ XV-15

q Currently validating vs. other flight test data
§ AW609 (Leonardo Helicopters)
§ Small-scale quad-, hexa-, and octo-copters

(US Army CCDC)
§ TRV-80

q Currently validating 
§ Rotor-on-rotor interactions 
§ Rotor-on-wing interactions

q Still fixing a few minor bugs (is it ever over, 
anyways?)

Ongoing/Future Work
q Integration with state-space free-vortex wake 
q Integration with aeroacoustic solver

US Army CCDC small-scale quadcopter configuration 

MATLAB Generic Multi-Rotor Flight Dynamics Simulator  (M-GenMR)



§Research Overview
qBio
qOverview of Research Topics 

§Experimental Capabilities 
qApproach to Flight Simulation
qLaboratory Setup 

§Computational Capabilities 
qSimulation Models
qGeneric Multi-Rotor Flight Dynamics Model
qState-Space Free-Vortex Wake 
qAeroacoustic Solver 

§Sponsored Research Projects 



Linearized High-Fidelity Aeromechanics for Extended 
Reality Simulation and Control of Shipboard Interactions

Problem
§ Rotor wake interaction w/ ship deck affects

q Performance 
q Handling qualities 

§ Fatal MV-22 Osprey crashes (2015, 2017)
Solution
§ Real-time prediction of adverse shipboard 

interactions 
§ Control laws to compensate for adverse 

interactions 
§ Innovative cueing methods (full-body haptics) for 

increased pilot awareness
Funding
§ ONR YIP $ 510,000 (B. Holm-Hansen) – Awarded
Interactions
§ John Tritschler (USNTPS)
§ Sven Schmitz (Penn State)

Adverse shipboard interactions

State-space free-vortex wake for prediction of shipboard 
interactions



State-Space Implementation and Linearization of 
Simulations with High-Fidelity Aeromechanics

Problem
§ Rotor noise expressed with PDE’s

q Much slower than real-time
q No linear model to base control system upon

§ Complex to cue rotor noise visually
Solution
§ State-variable implementation of aeromechanics
§ Linearize dynamics with noise as output
§ Active noise-abating flight control laws 
§ Cueing through full-body haptics (feel noise)
Funding
§ UMD/Penn State VLRCOE $461,000 – Awarded
Interactions
§ Joe Horn, Ken Brentner (Penn State)

Time-periodic state-space free vortex wake model

Real-time prediction and cueing of rotorcraft noise 
via full-body haptics



Interactional Aerodynamics Modeling and Flight Control 
Design of Multi-Rotor Unmanned Aircraft Systems

Problem
§ Rotor-on-rotor interactions predicted with very 

high-order models
§ Simulations far slower than real-time 
§ Linearized models non tractable for control design
Solution
§ Implementation of low-order dynamic inflow 

model for predicting rotor-on-rotor interactions
§ Linearization and model-order reduction
§ Flight control laws based on linear models that 

account for rotor-on-rotor interactions
Funding
§ U.S. Army $ 133,000 (Tom Berger) – Awarded
Interactions
§ Roberto Celi (UMD)
§ Mark Lopez, Emily Glover, Tom Berger, Ashwani 

Padthe (US Army CCDC)
Malloy TRV-80 Coaxial Quadcopter


