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▪ Periodically-forced systems exist 
across multiple engineering disciplines
❑Biological flyers (insects, birds, fish)
❑Rotorcraft 
❑Spacecraft
❑Wind turbines

▪ Dynamics represented by Non-Linear 
Time-Periodic Systems (NLTP)

▪ Stability analysis is challenging
❑ Equilibrum represented by periodic 

orbit

▪ Two main approaches to stability 
analysis

1. Averaging methods 
2. Floquet theory

Rotorcraft

Background

Biological Flyer 

Spacecraft

Wind Turbine



Averaging methods

▪ Stability analysis

1. Transform NLTP system into a 
Non-Linear Time-Invariant 
(NLTI) system

2. Linearize about equilibrium 
point to yield Linear Time-
Invariant (LTI) system

3. Assess stability with spectral 
analysis

▪ Avoid direct calculation of periodic 
orbit 

Background

NLTI 
System

Averaging

Find 
Periodic Orbit 
then Linearize

NLTP 
System

LTP 
System

Find 
Fixed Point 

then Linearize

Floquet 
Decomp.

LTI 
System

Spectral 
Analysis



Floquet theory

1. Need to solve for periodic orbit 
(i.e. trimming) 
❑Time marching (stable systems)
❑Autopilot trim 
❑Periodic shooting 
❑Harmonic balance

2. Linearize about periodic orbit to 
yield Linear Time-Periodic (LTP) 
system

3. Transform system into equivalent 
LTI system (Floquet 
Decomposition)

4. Assess stability with spectral 
analysis

Background

NLTI 
System

Averaging

Find 
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then Linearize

NLTP 
System
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System
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Averaging methods
▪ Need time scale separation between forcing 

frequency and vehicle dynamics

▪ Not suitable for all systems
❑Birds, large-scale insects
❑Helicopters

▪ Cannot deal with non-smooth dynamics

Floquet theory
▪ Need for state transition matrices

❑Computationally intensive
❑Numerically sensitive

▪ Trimming methods
❑Time marching → stable systems
❑Autopilot trim → prior knowledge of dynamics
❑Periodic shooting → cannot solve for HHC input
❑Harmonic balance → state transition matrices

Motivation

Flapping Frequency for Several Biological Flyers

UH-60 Black Hawk



Harmonic Decomposition

▪ First proposed for rotorcraft applications 
[Prasad et al. 2009]

▪ Used for approximating LTP systems with 
higher-order LTI models

▪ Does not rely on state transition matrices

▪ Numerically robust 

▪ Could be used as alternative to Floquet 
Decomposition 

Motivation

NLTI 
System

Averaging

Find 
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then Linearize

NLTP 
System

LTP 
System

Find 
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1. Develop an alternative approach to stability analysis, and 
control design of periodically-forced aerospace vehicles:
❑Does not rely on state transition matrices

❑Numerically robust 

❑Based on harmonic decomposition

❑Can be used to compute the harmonic control inputs that attenuate 
arbitrary state harmonics

2. Demonstrate the approach on several periodically-forced 
aerospace vehicles
❑Flapping-wing Micro Aerial Vehicle (MAV)

❑Helicopter 

❑Flapping-tail concept airplane

Objectives
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▪ Consider NLTP system 

ሶ𝒙 = 𝒇 𝒙, 𝒖, 𝑡

where

❑ 𝒙 𝑡 ∈ ℝ𝑛 state vector 

❑ 𝒖 𝑡 ∈ ℝ𝑚 control vector

▪ Nonlinear dynamics 𝒇 is 𝑇-periodic in 𝑡 such that 

𝒇 𝒙, 𝒖, 𝑡 = 𝒇 𝒙, 𝒖, 𝑡 + 𝑇

▪ Let 𝒙∗ 𝑡 and 𝒖∗ 𝑡 represent a periodic solution of the system such that 
𝒙∗ 𝑡 = 𝒙∗ 𝑡 + 𝑇
𝒖∗ 𝑡 = 𝒖∗ 𝑡 + 𝑇

▪ Then, balance problem is stated as follows: determine 𝒙∗ 𝑡 and 𝒖∗ 𝑡 such that 
ሶ𝒙∗ = 𝒇 𝒙∗, 𝒖∗, 𝑡

with ሶ𝒙∗ 𝑡 = ሶ𝒙∗ 𝑡 + 𝑇

Problem Definition



Step 1

▪ Assume fundamental period 𝑇 is 
known

▪ Fundamental period related to forcing 

frequency via 𝑇 =
2𝜋

𝜔

▪ Iterative algorithm 
❑Need for initial guess

❑Candidate solution is refined at each 
iteration 

❑Stopped when convergence criteria is met

▪ Choose initial guess 𝒙0
∗ (𝑡), 𝒖0

∗ (𝑡)

Numerical Method

𝒙0
∗ (𝑡), 𝒖0

∗ (𝑡)

𝒆𝑘 ∞ < tol ?

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝑼𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝒖𝑘+1

∗ (𝑡)

State 
Derivative



Step 2

▪ Iteration begins with decomposing 
candidate periodic solution in finite 
number of harmonics

𝒙𝑘
∗ = 𝒙𝑘0

∗ +

𝒊=𝟏

𝑁

𝒙𝑘1𝑐
∗ cos

2𝜋𝑖𝑡

𝑇
+ 𝒙𝑘1𝑠

∗ cos
2𝜋𝑖𝑡

𝑇

𝒖𝑘
∗ = 𝒖𝑘0

∗ +

𝒋=𝟏

𝑀

𝒖𝑘1𝑐
∗ cos

2𝜋𝑗𝑡

𝑇
+ 𝒖𝑘1𝑠

∗ cos
2𝜋𝑗𝑡

𝑇

▪ Re-write candidate solution in terms of 
Fourier coeffs.

𝑿𝑘
∗𝑇 = 𝒙𝑘0

∗ 𝒙𝑘1𝑐
∗ 𝒙𝑘1𝑠

∗ …𝒙𝑘𝑁𝑐
∗ 𝒙𝑘𝑁𝑠

∗

𝑼𝑘
∗𝑇 = 𝒖𝑘0

∗ 𝒖𝑘1𝑐
∗ 𝒖𝑘1𝑠

∗ …𝒖𝑘𝑀𝑐

∗ 𝒖𝑘𝑀𝑠

∗

▪ Form vector of unknowns at iteration 𝑘

𝚯𝑘
𝑇 = 𝑿𝑘

∗𝑇 𝑼𝑘
∗𝑇 ∈ ℝ𝑛 2𝑁+1 +𝑚(2𝑀+1)

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?



Step 2a

▪ Calculate state derivative vector ሶ𝒙𝑘
∗ (𝑡)

along candidate periodic solution

▪ Decompose into 𝑁 harmonics

ሶ𝒙𝑘
∗ = ሶ𝒙𝑘0

∗ +

𝒊=𝟏

𝑁

ሶ𝒙𝑘1𝑐
∗ cos

2𝜋𝑖𝑡

𝑇
+ ሶ𝒙𝑘1𝑠

∗ cos
2𝜋𝑖𝑡

𝑇

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

State 
Derivative

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

𝒆𝑘 ∞ < tol ?



Step 3

▪ Define error vector based on integral 
relations 

𝒆𝑘
𝑇 = 𝑾 ሶ𝒙𝑘

∗ 𝑇 ሶ𝒙𝑘1𝑐
∗ −

2𝜋𝑖

𝑇
𝒙𝑘1𝑠
∗

𝑇

ሶ𝒙𝑘1𝑠
∗ +

2𝜋𝑖

𝑇
𝒙𝑘1𝑐
∗

𝑇

where

❑ 𝒆𝑘
𝑇 ∈ ℝ𝑛 2𝑁+1

❑𝑾 ∈ ℝ𝑛 2𝑁+1 ×𝑛 2𝑁+1 diagonal scaling matrix

▪ If 𝒆𝑘 ∞ is less than arbitrary 
tolerance, then solution is found 

▪ If not, algorithm proceeds 

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?



Step 4

▪ NLTP system linearized about candidate 
periodic orbit to yield LTP system 

𝜟 ሶ𝒙 = 𝑭𝑘 𝑡 𝜟𝒙 + 𝑮𝑘(𝑡)𝜟𝒖
where

❑𝑭𝑘 𝑡 =
𝝏𝒇 𝒙,𝒖,𝑡

𝝏𝒙
ȁ𝒙𝑘

∗ , 𝒖𝑘
∗

❑𝑮𝑘 𝑡 =
𝝏𝒇 𝒙,𝒖,𝑡

𝝏𝒖
ȁ𝒙𝑘

∗ , 𝒖𝑘
∗

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?



Step 5

▪ Approximate LTP system with higher-
order LTI model via harmonic 
decomposition 

𝜟 ሶ𝑿 = 𝑨𝑘𝜟𝑿 + 𝑩𝑘𝜟𝑼
where

❑𝚫𝑿𝑇 = 𝜟𝒙0
𝑻 𝜟𝒙1𝑐

𝑻 𝜟𝒙1𝑠
𝑻 …𝜟𝒙𝑁𝑐

𝑻 𝜟𝒙𝑁𝑠
𝑻

❑𝚫𝑼𝑇 = 𝜟𝒖0
𝑻 𝜟𝒖1𝑐

𝑻 𝜟𝒖1𝑠
𝑻 …𝜟𝒖𝑀𝑐

𝑻 𝜟𝒖𝑀𝑠
𝑻

❑𝑨𝑘 ∈ ℝ𝑛 2𝑁+1 ×𝑛 2𝑁+1

❑𝑩𝑘 ∈ ℝ𝑛 2𝑁+1 ×𝑚 2𝑀+1

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?



Step 6

▪ Define the Jacobian matrix of the 
harmonic balancing algorithm at 
iteration 𝑘

𝑱𝑘 = 𝑨𝑘 𝑩𝑘

where

❑𝑱𝑘 ∈ ℝ𝑛 2𝑁+1 ×[𝑛 2𝑁+1 +𝑚(2𝑀+1)]

▪ Underdetermined problem with no 
unique solution 
❑𝑛 2𝑁 + 1 +𝑚 2𝑀 + 1 unknowns

❑𝑛 2𝑁 + 1 constraints

▪ Need to specify 𝑚 2𝑀 + 1 trim 
conditions

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?



Step 6 (cont’d)

▪ Can assume control input harmonics 
higher than 0th to be zero for typical 
aerospace vehicles

▪ This corresponds to imposing 2𝑀𝑚
conditions

▪ Remaining 𝑚 conditions specified by 
fixing position (𝑥, 𝑦, 𝑧) and heading (𝜓)
❑Vehicles typically employ 4 control inputs

❑ Dynamics invariant wrt position and 
heading 

▪ Newton-Rhapson used for update
𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘

−𝟏𝒆𝑘

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?



Step 7

▪ New candidate periodic solution 
reconstructed in time domain 

𝒙𝑘+1
∗ = 𝒙𝑘+10

∗ +

𝒊=𝟏

𝑁

𝒙𝑘+11𝑐
∗ cos

2𝜋𝑖𝑡

𝑇
+ 𝒙𝑘+11𝑠

∗ cos
2𝜋𝑖𝑡

𝑇

𝒖𝑘+1
∗ = 𝒖𝑘+10

∗ +

𝒊=𝟏

𝑀

𝒖𝑘+11𝑐
∗ cos

2𝜋𝑖𝑡

𝑇
+ 𝒖𝑘+11𝑠

∗ cos
2𝜋𝑖𝑡

𝑇

Numerical Method

𝒙0
∗ (𝑡), 𝐮0

∗ (𝑡)

No

Fourier 
Decomp.

𝑿𝑘
∗ , 𝐔𝑘

∗ ሶ𝒙𝑘
∗ (𝑡)

𝒙∗(𝑡), 𝒖∗(𝑡)
Solution

Initial Guess

Fourier 
Decomp.

Linearize

Yes

LTP 
System

Harmonic
Decomp.

LTI 
System

𝚯𝑘+1 = 𝚯𝑘 − 𝑱𝑘
−𝟏𝒆𝑘

Update

Harmonic
Summation

𝒙𝑘+1
∗ (𝑡), 𝐮𝑘+1

∗ (𝑡)

State 
Derivative

𝒆𝑘 ∞ < tol ?
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Vertical Dynamics Model [Hassan et al. 2016]

▪ Flapping-wing MAV representative of a 
hawk moth

▪ NLTP vertical dynamics 

ሶ𝑧
ሶ𝜙
ሶ𝑤
ሷ𝜙

=

𝑤
ሶ𝜙

𝑔 − 𝑘𝑑1
ሶ𝜙 𝑤 − 𝑘𝐿 ሶ𝜙2

−𝑘𝑑2
ሶ𝜙 ሶ𝜙 − 𝑘𝑑3𝑤

ሶ𝜙

+

0

0
0

1

𝐼𝐹
cos(𝜔𝑡)

𝑈

▪ 4 states + 1 control input

❑States: 𝒙𝑇 = {𝑧 𝜙 𝑤 ሶ𝜙} (𝑛 = 2)

❑Controls: 𝒖 = 𝑈 (m = 1)

▪ Forcing frequency 𝜔 = 165 rad/s

Flapping-Wing MAV

Schematic diagram of a FWMAV



Trim Solution

▪ Objective: find periodic trim in hover 

▪ Harmonics retained

❑Up to 2nd state harmonic (𝑁 = 2)

❑0th control harmonic (𝑀 = 0)

▪ 21 unknowns vs. 20 constraints → set 
0th harmonic of vertical position to 
zero 

▪ Initial guess far from periodic orbit 
results in increasing number of 
iterations

▪ Computation time: 0.51 sec/iteration

▪ Higher-order LTI overlaps NLTP 
response to control input doublet

Flapping-Wing MAV

Periodic trim solution



Trim Solution

▪ Objective: find periodic trim in hover 

▪ Harmonics retained

❑Up to 2nd state harmonic (𝑁 = 2)

❑0th control harmonic (𝑀 = 0)

▪ 21 unknowns vs. 20 constraints → set 
0th harmonic of vertical position to 
zero 

▪ Initial guess far from periodic orbit 
results in increasing number of 
iterations

▪ Computation time: 0.51 sec/iteration

▪ Higher-order LTI overlaps NLTP 
response to control input doublet

Flapping-Wing MAV

Convergence Properties



Trim Solution

▪ Objective: find periodic trim in hover 

▪ Harmonics retained

❑Up to 2nd state harmonic (𝑁 = 2)

❑0th control harmonic (𝑀 = 0)

▪ 21 unknowns vs. 20 constraints → set 
0th harmonic of vertical position to 
zero 

▪ Initial guess far from periodic orbit 
results in increasing number of 
iterations

▪ Computation time: 0.51 sec/iteration

▪ Higher-order LTI overlaps NLTP 
response to control input doublet

Flapping-Wing MAV

Doublet response: NLTP vs LTI



Longitudinal Dynamics Model [Taha 2014]

▪ Flapping-wing MAV representative of a 
hawk moth

▪ NLTP longitudinal dynamics 

ሶ𝑥
ሶ𝑧
ሶ𝑢
ሶ𝑤
ሶ𝑞
ሶ𝜃

=

𝑢 cos 𝜃 + 𝑤 sin 𝜃
−𝑢 sin 𝜃 + 𝑤 cos 𝜃
−𝑞𝑤 − 𝑔 sin 𝜃
𝑞𝑢 + 𝑔 cos 𝜃

0
𝑞

+

0
0

𝑋(𝒙, 𝒖, 𝑡)/𝑚
𝑌(𝒙, 𝒖, 𝑡)/𝑚
𝑀(𝒙, 𝒖, 𝑡)/𝐼𝑦

0
▪ 6 states + 2 control inputs

❑States: 𝒙𝑇 = {𝑥 𝑧 𝑢 𝑤 𝑞 𝜃}

❑Controls: 𝒖𝑻 = {Φ 𝛼𝑚}

▪ Forcing frequency 𝜔 = 165 rad/s

Flapping-Wing MAV

Schematic diagram of a FWMAV



Flapping-Wing MAV

Periodic Trim Solution

Trim Solution

▪ Objective: find periodic trim in hover 

▪ Harmonics retained

❑Up to 4th state harmonic (𝑁 = 4)

❑0th control harmonic (𝑀 = 0)

▪ 54 unknowns vs. 52 constraints → 0th

harmonic of long. and vertical position 
set to zero 

▪ Higher-order LTI overlaps NLTP 
response to control input doublet



Flapping-Wing MAV

Doublet response: NLTP vs LTI

Trim Solution

▪ Objective: find periodic trim in hover 

▪ Harmonics retained

❑Up to 4th state harmonic (𝑁 = 4)

❑0th control harmonic (𝑀 = 0)

▪ 54 unknowns vs. 52 constraints →0th

harmonic of long. and vertical position 
set to zero 

▪ Higher-order LTI overlaps NLTP 
response to control input doublet



Spectral Analysis
▪ Higher-order LTI model is residualized 

to yield a 4-state model 
▪ Low-frequency eigenvalues match 

those of the higher-order LTI
▪ Can clearly see hovering cubic
▪ Averaged dynamics indicate 

instability…
▪ … but dynamics are stable! 
▪ System gains pitch stiffness as result 

of high-frequency, high-amplitude 
forcing 

Flapping-Wing MAV

Eigenvalues in hover

Pitch 
Subsidence

Pitch 
Oscillation

Heave
Subsidence



Simulation Model

▪ Utility helicopter representative of UH-60 

▪ implementation of GenHel

▪ Rigid flap + lead-lag

▪ Dynamic inflow model

❑3-state Pitt-Peters (main rotor)

❑1-state Bailey (tail rotor)

▪ Nonlinear aerodynamics
❑Airframe 

❑Rotor blades

▪ 32 states + 4 control inputs

❑Fuselage: 𝒙𝐹
𝑇 = {𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜙 𝜃 𝜓 𝑥 𝑦 𝑧}

❑Rotor: 𝒙𝑅
𝑇 = {𝜷MBC

𝑇 ሶ𝜷MBC
𝑇 𝜻MBC

𝑇 ሶ𝜻MBC
𝑇 𝝀MBC

𝑇 𝜆0𝑇}

❑Controls: 𝒖𝑇 = {𝛿lat 𝛿lon 𝛿col 𝛿ped}

Helicopter

UH-60 Black Hawk



Helicopter

Periodic equilibrium

Trim Solution

▪ Objective: find periodic trim at 120 kts

▪ Harmonics retained

❑Up to 4th state harmonic (𝑁 = 4)

❑0th control harmonic (𝑀 = 0)

▪ 288 unknowns vs. 284 constraints →
set 0th harmonic of position and 
heading to zero

▪ Good agreement with flight test data 

▪ Robust performance to poor initial 
guess

▪ Computation time: 40 sec/iteration



Helicopter

Vertical acceleration over one rotor revolution: 
numerical solution vs. JUH-60A RASCAL flight data

Trim Solution

▪ Objective: find periodic trim at 120 kts

▪ Harmonics retained

❑Up to 4th state harmonic (𝑁 = 4)

❑0th control harmonic (𝑀 = 0)

▪ 288 unknowns vs. 284 constraints →
set 0th harmonic of position and 
heading to zero

▪ Good agreement with flight test data 

▪ Robust performance to poor initial 
guess

▪ Computation time: 40 sec/iteration



Helicopter

Trim Solution

▪ Objective: find periodic trim at 120 kts

▪ Harmonics retained

❑Up to 4th state harmonic (𝑁 = 4)

❑0th control harmonic (𝑀 = 0)

▪ 288 unknowns vs. 284 constraints →
set 0th harmonic of position and 
heading to zero

▪ Good agreement with flight test data 

▪ Robust performance to poor initial 
guess

▪ Computation time: 40 sec/iteration

Convergence Properties



Helicopter

HHC input to eliminate vibrations at CG

Trim Solution

▪ Objective: find higher-harmonic control 
(HHC) input to eliminate vibrations at 
CG at 120 kts

▪ Harmonics retained

❑Up to 4th state harmonic (𝑁 = 4)

❑Up to 4th control harmonic (𝑀 = 4)

▪ 324 unknowns vs. 288 constraints →
all position and heading harmonics set 
to zero

▪ HHC input shows 4/rev behavior as 
expected



Simulation Model 

▪ Flapping-tail concept airplane representative of 
a Boeing 737-800

▪ Horizontail tail subjected to oscillatory motion

❑Pitching 𝛼 𝑡 = 𝐴𝛼 sin(𝜔𝑡 + 𝜙𝛼)

❑Plunging ℎ 𝑡 = 𝐴ℎ sin(𝜔𝑡 + 𝜙ℎ)

❑Flapping 𝛿 𝑡 = 𝐴𝛿 sin(𝜔𝑡 + 𝜙𝛿)

▪ Longitudinal dynamics

ሶ𝑢
ሶ𝑤
ሶ𝑞
ሶ𝜃
ሶ𝑥

=

−𝑞𝑤 − 𝑔 sin 𝜃
𝑞𝑢 + 𝑔 cos 𝜃

0
𝑞

𝑢 cos 𝜃 + 𝑤 sin 𝜃

+

𝑋(𝒙, 𝑡)/𝑚
𝑌(𝒙, 𝑡)/𝑚

𝑀(𝒙, 𝑡)/𝐼𝑦
0
0

▪ 5 states + 0 control inputs
❑States: 𝒙𝑇 = {𝑢 𝑤 𝑞 𝜃 𝑥}

Flapping-Tail Airplane

Boeing 737-800

Diagram of oscillating tail

c

Pitching 
Pivot

Flapping 
Pivot



Flapping-Tail Airplane

Periodic trim solution

Trim Solution

▪ Objective: find periodic trim at 780 ft/s

▪ Harmonics retained

❑Up to 2nd state harmonic (𝑁 = 2)

▪ 25 unknowns vs. 25 constraints → OK! 

▪ Vibration level prediction

❑Flapping tail plane: 0.5 g 

❑Typical airliners: 0.01 g 

❑Helicopters: 0.05 - 0.1 g

Not Comfortable



▪ Introduction
❑Background

❑Motivation 

❑Objectives

▪Methodology 
❑Problem Definition 

❑Numerical Methods

▪Results
❑Flapping-Wing MAV

❑Helicopter 

❑Flapping-Tail Airplane

▪Conclusions
❑Broader Implications

❑Future Directions



1. Developed a numerical method for determining the periodic 
state and control solutions of nonlinear time-periodic systems
❑Harmonic balance revisitation that employs high-order LTI models of 

the vehicle dynamics

❑Based on harmonic decomposition

❑Does not rely on state transition matrices 

❑Simultaneously solves for the approximate higher-order LTI dynamics

❑Can be used to compute the high-harmonic control inputs that 
attenuate arbitrary state harmonics

2. Algorithm applications
❑Development of advanced flight control laws that attenuate certain 

state harmonics 

❑Prediction of loads and vibrations

Conclusions



Broader Implications

NLTP

Trim Non-Linear Time-Periodic (NLTP) System
▪ Find states and controls that result in periodic orbit

LTP

Obtain Linear Time-Periodic (LTP) System
▪ Linearization schemes 

LTI

Transform LTP system into higher-order Linear Time Invariant (LTI) system
▪ Harmonic Decomposition

▪ Stability Analysis   

Reduced 
Order LTI

Model Order Reduction
▪ Reduce states that cannot be observed/measured

Control 
Design

Harmonic Control Design
▪ Enhance stability/meet desired response characteristics 

▪ Minimize arbitrary state/output harmonics



Thickness
displacement of fluid

generates sound

Loading
accelerating force distribution

generates sound
(includes BVI noise)

Quadrupole
All volume sources,
non-linear effects

nonuniform sound speed

M > 1

Ffowcs Williams-Hawkings Equation 

∇ 2𝑝′ 𝒙, 𝑡 =
𝜕

𝜕𝑡
𝑄𝛿 𝑓 −

𝜕

𝜕𝑥𝑖
𝐹𝑖𝛿 𝑓 + 

𝜕

𝜕𝑥𝑖𝑥𝑗
𝑇𝑖𝑗𝐻 𝑓

Courtesy of K. S. Brentner

Future Directions
Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics



High-Fidelity Airloads

Flight Simulator
(aircraft trim)

Rotor Flow
and Loads

Model

Noise
Prediction

High-Fidelity Airloads

Tail Rotor 
Module

Main Rotor
Module

Other 
Modules

Control 
System

S

Eqn of 
Motion

Swashplate 
Angles

Aircraft
State

Flight Simulator

Noise
Prediction

Rotor Flow
and Loads

Model

Courtesy of K. S. Brentner and Mrunali Botre

Future Directions
Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics



A³ by Airbus Vahana (UAM)

Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics

Future Directions

Bell 525 Relentless

Preliminary results from 
novel algorithm

Objectives
▪ Include vibration and aeroacoustic as output 

of NLTP dynamics
▪ Derive high-order LTI models for use in 

vibrations and acoustic predictions
▪ Drastically abate computation time
▪ Develop noise-abating control laws based on 

LTI system theory → powerful
▪ Noise on urban areas (UAM)
▪ Cabin noise

Funding Agencies / Interactions
▪ VLRCOE (NASA): coordinated task with K.S. 

Brentner and J.F. Horn
▪ E. Grennwood (PSU)
▪ FAA Center of Excellence (ASCENT)
▪ SBIR/STTR (ART, CDI, Craft Tech)



Objectives
▪ Extend proposed method to more 

complex FWMAV models including 
unsteady aerodynamics states

▪ Assess stability of wide spectrum of bio 
flyers, especially those with small time 
scale separation

▪ Compare with averaging methods
▪ Perform control design based on high-

order LTI systems that accounts for 
higher harmonics

Funding Agencies / Interactions
▪ ONR (Marc Steinberg)
▪ NSF DCSD
▪ H. Taha (UCI)

Future Directions
Stability and Control of Flapping-Wing Flight 

Flapping Frequency for Several Biological Flyers



Problem
▪ Relative dynamics of spacecraft in 

elliptical orbits is time-periodic
▪ Could approximate with high-order LTI 

systems
▪ Forcing freq. changes within one periodic 

orbit (true anomaly time derivative)

Objectives
▪ Extend harmonic decomposition to 

systems with periodically-varying forcing 
frequencies

▪ Perform control design based ofn high-
order LTI systems

Interactions
▪ P. Singla, R. Melton (PSU) M. Lovera (PoliMi)

Spacecraft Formation Flying

Future Directions
Linear Time-Invariant Approximations of Spacecraft Formation Dynamics



Thank you

Questions?


