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Background

= Periodically-forced systems exist
across multiple engineering disciplines

QdBiological flyers (insects, birds, fish)
dRotorcraft
dSpacecraft
QAWind turbines
= Dynamics represented by Non-Linear
Time-Periodic Systems (NLTP)
= Stability analysis is challenging
d Equilibrum represented by periodic + %
orbit . .
= Two main approaches to stability Spacecraft
analysis
1. Averaging methods
2. Floquet theory

Rotorcraft

Wind Turbine



= Stability analysis
1. Transform NLTP system into a

Non-Linear Time-Invariant
(NLTI) system

2. Linearize about equilibrium
point to yield Linear Time-
Invariant (LTI) system

3. Assess stability with spectral
analysis

= Avoid direct calculation of periodic
orbit

NLTP
System

NLTI
System

Find
Fixed Point
then Linearize

Find
Periodic Orbit
then Linearize

LTI
System

Spectral
Analysis



1. Need to solve for periodic orbit
(i.e. trimming)
QTime marching (stable systems)
QdAutopilot trim
QPeriodic shooting
dHarmonic balance

2. Linearize about periodic orbit to
yield Linear Time-Periodic (LTP)
system

3. Transform system into equivalent
LTI system (Floquet
Decomposition)

4. Assess stability with spectral
analysis

NLTP
System

Find
Periodic Orbit
then Linearize

NLTI
System

Find
Fixed Point
then Linearize

LTI
System

Spectral
Analysis




Motivation

Averaging methods

= Need time scale separation between forcing
frequency and vehicle dynamics l |

= Not suitable for all systems i Torsn [ i |
U Birds, large-scale insects

QO Helicopters f ‘W é
= Cannot deal with non-smooth dynamics SENRE LA
Floquet theory

= Need for state transition matrices
O Computationally intensive
O Numerically sensitive

= Trimming methods
O Time marching - stable systems
O Autopilot trim - prior knowledge of dynamics
Q Periodic shooting - cannot solve for HHC input
QHarmonic balance > state transition matrices UH-60 Black Hawk

10" 102 10°
Flapping frequency [Hz]

Flapping Frequency for Several Biological Flyers




First proposed for rotorcraft applications

[Prasad et al. 2009]

Used for approximating LTP systems with
higher-order LTI models

Does not rely on state transition matrices

Numerically robust

Could be used as alternative to Floquet

Decomposition

NLTP

System
]
Find
Averaging Perlod.lc Orplt
then Linearize
NLTI LTP
System System
4
nd Harmonic
Fixed Point Floquet Depamon®
then Linearize Decomp. P
¥
LTI
System

Spectral
Analysis




1. Develop an alternative approach to stability analysis, and
control design of periodically-forced aerospace vehicles:
Does not rely on state transition matrices
dNumerically robust
Based on harmonic decomposition

Can be used to compute the harmonic control inputs that attenuate
arbitrary state harmonics

2. Demonstrate the approach on several periodically-forced
aerospace vehicles

QAFlapping-wing Micro Aerial Vehicle (MAV)

dHelicopter

QFlapping-tail concept airplane
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= Consider NLTP system
x=f(xut)
where
O x(t) € R™ state vector
O u(t) € R™ control vector

= Nonlinear dynamics f is T-periodic in t such that
f(x,u,t) = f(x,ut+T)

= Let x*(t) and u*(t) represent a periodic solution of the system such that
x*(t)=x"(t+T)
w@®)=ut+T)
= Then, balance problem is stated as follows: determine x*(t) and u*(t) such that
x*=f(x*,u’t)
with x*(t) = x*(t + T)



Step 1 Initial Guess

- - X (£), ug (1)
= Assume fundamental period T is k RN
known k+1 " k+1
= Fundamental period related to forcing @ ,
: 21 Decomp./ \ Derivative Harmonic
frequency viaT = N T Summation
= [terative algorithm Xie, Ui % (0 |

dNeed for initial guess

L Candidate solution is refined at each
iteration

Update
Or+1 =0, —Jile

Fourier
Decomp.

A

dStopped when convergence criteria is met

Solution

LTI
= Choose initial guess xj (t), uyg (t) (), w' ()

System

A

Harmonic
Decomp.

4| LTP
System




Step 2

= |[teration begins with decomposing
candidate periodic solution in finite
number of harmonics

2Tit . 2Tit
X, = xk + Zxkl COS E + X, €OS -

. Zn]t 21jt
Up = Uy + Z uklc CoS T + ukls cos T

= Re-write candldate solution in terms of
Fourier coeffs.

*T *k £ 3 *k %k %k
Xk — [xkoxk1cxk15 "'kackas]
UI*( — [u;;ou;;mu;;m "'uI*CMcuZMs]
= Form vector of unknowns at iteration k

o — lXI*{T U,*{T] e RPN+D+m(2M+1)

)

Initial Guess
Xo (), up (t)

Fourier
Decomp.

State
Derivative

, U X (1)

Solution

x"(6), u'(t)

Xj 1 (£), Wp 1 (2)

J N

Harmonic
Summation

—p
System

LTP

Harmonic
Decomp.




Step 2a

= Calculate state derivative vector xj(t)

along candidate periodic solution

. DecomposNe into N harmonics

e . 2Tit »
X = X, + Z X}, COS N + X}, COS
=

l

21Tt

T

)

Initial Guess
Xo (), up (t)

!

Fourier
Decomp.

State
Derivative

Xy, Uk X (8)

Solution

x"(6), u'(t)

Yes

leklle < tol?

Fourier
Decomp.

Xj 1 (£), Wp 1 (2)

J N

Harmonic
Summation

—p
System

LTP

Harmonic
Decomp.




Step 3

= Define error vector based on integral
relations

el =W

where
0 el e RM2N+1)

Qw e RMEN+Dxn2N+1) diggonal scaling matrix

If ||ex || IS less than arbitrary
tolerance, then solution is found

= If not, algorithm proceeds

R 2mi T,* 2mi !
)" | Xy = 7 Xy | | Freas 7 X

Solution

x"(6), u'(t)

Fourier State
Decomp. Derivative

Initial Guess

X (), ug (£)

Uy X (8)

Fourier
Decomp.

Xj 1 (£), Wp 1 (2)

A

Harmonic
Summation

A

Update
Or+1 =0, —Jile

A

LTI

System
A

4| LTP
System

Harmonic

Decomp.




Step 4

= NLTP system linearized about candidate
periodic orbit to yield LTP system

where

of (x,u,t
QF, ()=2228 . .
QG ()=

af(x,u,t) |
ou X U

Initial Guess
Xo (), up (t)

[

Fourier
Decomp.

State
Derivative

Xy, Uk X (8)

Solution

x"(6), u'(t)

Yes

leklle < tol?

Fourier
Decomp.

Xj 1 (£), Wp 1 (2)

J N

Harmonic
Summation

LTP
System

Harmonic
Decomp.




Step 5 Initial Guess

= Approximate LTP system with higher- x5 (1), uj (1)
order LTI model via harmonic “
decomposition

. Fourier State .
AX = AkAX + BkAU Decomp. Derivative Harmonic
Summation
where

QAXT = [Ax} AxT, AxT ... Ax%, AxE] Xie, Ui X (6) 1

Xj 1 (£), Wp 1 (2)

Update
Or+1 =0, —Jile

QAUT = [aul Aul, auY .. Aul) Aul ] Fourier
Decomp.

DAk = Rn(2N+1)xn(2N+1)
DBk = ]Rn(ZN+1)><m(2M+1)

a

Solution

x"(6), u'(t)

LTI
System

ﬂn

4| LIP Harmonic
System Decomp.




Step 6

= Define the Jacobian matrix of the
harmonic balancing algorithm at
iteration k
Jx = [Ax By]
where
QJ, € RMEN+1)X[n(2N+1)+m(2M+1)]

= Underdetermined problem with no
unique solution

dn(2N + 1) + m(2M + 1) unknowns
dn(2N + 1) constraints

= Need to specify m(2M + 1) trim
conditions

Solution

x"(6), u'(t)

Initial Guess
Xo (), up (t)

Fourier State
Decomp. Derivative

ko Uk X (8)

Fourier
Decomp.

Xj 1 (£), Wp 1 (2)

Harmonic
Summation
A

Update
Or+1 =0, —Jile

A

LTI
System

A

LTP
System

Harmonic
Decomp.




Step 6 (cont'd)

= Can assume control input harmonics
higher than 0t to be zero for typical
aerospace vehicles

= This corresponds to imposing 2Mm
conditions

= Remaining m conditions specified by
fixing position (x, y, z) and heading (y)
QVehicles typically employ 4 control inputs

O Dynamics invariant wrt position and
heading

= Newton-Rhapson used for update
Qi1 =0 —Ji ey

Solution

x"(6), u'(t)

Initial Guess
Xo (), up (t)

Fourier State
Decomp. Derivative

, U X (1)

Xj 1 (£), Wp 1 (2)

A

Harmonic
Summation

a

Fourier
Decomp.

Update
Or+1 =0, —Jile

A

LTI
System

A

4| LTP
System

Harmonic
Decomp.




Step 7

= New candidate periodic solution

reconstruct%d in time dom
§ . . 2mit
Xk+1 = Xgt+1, T z Xht11 COS| T

M
. . 2mit
Uppq = Upyq, + ) Upyq,, COS T

i=1

ain

) 2Tit
+ Xj41,, COS -
) 2Tit
+ U4, COS -

Solution

x"(6), u'(t)

Initial Guess
Xo (), up (t)

b

Fourier
Decomp.

State
Derivative

, U X (1)

Yes

llexllo < tol?

Fourier
Decomp.

Xj 1 (£), Wp 1 (2)

A

Harmonic
Summation

A

Update
Or+1 =0, —Jile

A

LTI
System

LTP
System

Harmonic
Decomp.
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Flapping-Wing MAV

Vertical Dynamics Model [Hassan et al. 2016]
= Flapping-wing MAYV representative of a

hawk moth Strog
' . P ;2: a2
= NLTP vertical dynamics e o
Gl y 1.
§{5 _ L gz 0 U
W 9 d, |¢|W LP 1
oo _k . . . k ) - COS(wt)
-¢- = dZ |¢ | ¢ d3 W¢ - _IF - Sidle \];ie*g of /
= 4 states + 1 control input y 0 View
QStates: xT = {zpw ¢} (n = 2)
QControls:u = U (m = 1) Schematic diagram of a FWMAV

= Forcing frequency w = 165 rad/s




Flapping-Wing MAV

Trim Solution

10 Initial Guess - - - - Solution

= Objective: find periodic trim in hover 5
» Harmonics retained

QUp to 2n state harmonic (N = 2) g

0™ control harmonic (M = 0) b

= 21 unknowns vs. 20 constraints > set £}

0t harmonic of vertical position to 2 ok

Zero o

0.3 0.4 0.5 0.6 0.7

Nondimensioanl time, t/T

Periodic trim solution



Flapping-Wing MAV

Trim Solution o

Solution 1
~ - = = -Solution 2

= |nitial guess far from periodic orbit | = e |
results in increasing number of L
iterations

Convergence Properties

Georgia |
Tech)

CREATING THE NEXT



Flapping-Wing MAV

Trim Solution

I i I I i i I |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]

Doublet response: NLTP vs LTI

= Computation time: 0.51 sec/iteration

= Higher-order LTI overlaps NLTP Lorcte |
response to control input doublet T@@h



Flapping-Wing MAV

Longitudinal Dynamics Model [Taha 2014]
= Flapping-wing MAYV representative of a

hawk moth S
= NLTP longitudinal dynamlcs e ﬁ«§$
-1 [ucos@ +wsinf - 0 T v
7 —usinf + wcos 6 0 Wing Section
ul|l | —qw —gsinb X(x,u t)/m
w| qu + g cos 6 + Y(x,u,t)/m t
1 0 M(x,u,t)/1, R "
6- q - 0 : 0 Vi
"6 states + 2 control mputs ;
QStates: x’ = {x zuw q 6} Schematic diagram of a FWMAV

QControls: u’ = {® a,,}
= Forcing frequency w = 165 rad/s



Flapping-Wing MAV

Trim Solution
= Objective: find periodic trim in hover

= Harmonics retained
QUp to 4t state harmonic (N = 4)
Q0™ control harmonic (M = 0)

= 54 unknowns vs. 52 constraints - 0t

harmonic of long. and vertical position
set to zero

g [deg/s] w [m/s]

[=]
[=]
rd
[=]
P
=]
[}
=]
=y
[=]
m
[=]
[=r]
[=]
=
[=]
(=]
=]
=]
-

g . &
i
A
\1
SR |

— = mm

f [deq]
I
i
I
/
)
A\
\

) 0 01 0.2 03 04 -:}.IS 06 Q7 08 0g 1
Nondimensioanl time, t/T

Periodic Trim Solution



Flapping-Wing MAV

Trim Solution

[|[——NL =-=--LTI|

)>

[deg/s] w [m/s]

= Higher-order LTI overlaps NLTP N
response to control input doublet M
2o
[ 02 04 06 'D.E.Tim1e [511.2 1.4 16 18 2
Doublet response: NLTP vs LTI Georgia |
Tech|
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Spectral Analysis

Flapping-Wing MAV Pitch

Higher-order LTI model is residualized

to yield a 4-state model 4

Low-frequency eigenvalues match
those of the higher-order LTI

Can clearly see hovering cubic
Averaged dynamics indicate
instability...

Imag

... but dynamics are stable! at

System gains pitch stiffness as result
of high-frequency, high-amplitude
forcing

-12

Oscillation
S
e
% High-Order LTI / [
O 4-State Model (Residualized) l’ /
<4 4-State Model (Averaged) v @ ,/
\N=~
-
” N\ 77N
( 4 e | ( @dq | x
Heave Rt
. i ® \
Pitch Subsidence : !
Subsidence \ i
. . . . L TR
-10 -8 5 -4 -2 \w_,’ 2

Real
Eigenvalues in hover



Helicopter

Simulation Model

= Utility helicopter representative of UH-60
= julia implementation of GenHel
= Rigid flap + lead-lag

= Dynamic inflow model
3-state Pitt-Peters (main rotor)
Q1-state Bailey (tail rotor)

= Nonlinear aerodynamics
dAirframe
Rotor blades UH-60 Black Hawk
= 32 states + 4 control inputs
QFuselage:xL = {fuvwpqr¢ 8y xy z}

QRotor: xj = {ﬁTI\;IBC BTD;IBC (71\;ch zyl\;IBC ATI\;IBC Aot}
QControls: u’ = {5Iat 6lon 5col 5ped}




Helicopter

Trim Solution o Initial guess = = = Solution
= Objective: find periodic trim at 120 kts g . L AN R,
. " = k4 h - ,f N/
= Harmonics retained T oo —
QUp to 4t state harmonic (N = 4) e ) - .
A0t control harmonic (M = 0) SN Y SN A
=, Yy \ /" "'\ ; \
= 288 unknowns vs. 284 constraints -2 e —
set Ot harmonic of position and ot ] .. -
heading to zero 7 SN
D 0 - - ‘x !:

Azimﬁth an.gle, i [deq]
Periodic equilibrium



Helicopter

Trim Solution
'\ Solution
. ooals f"-. Py = = ~Flight data| |
:N
c 002
]
$
i
E 0.02 F
8
{14
= 0.04
= Good agreement with flight test data - ]
. 0 w4 w2 W T 4 W Tidx 2m

Azimuth angle, v [deq]

Vertical acceleration over one rotor revolution:
numerical solution vs. JUH-60A RASCAL flight data



Trim Solution

Helicopter

Solution 1
= = =Solution 2

= Robust performance to poor initial

guess

» Computation time: 40 sec/iteration

lteration
Convergence Properties




= Objective: find higher-harmonic control
(HHC) input to eliminate vibrations at
CG at 120 kts

= Harmonics retained
QUp to 4t state harmonic (N = 4)
QUp to 4t control harmonic (M = 4)
= 324 unknowns vs. 288 constraints 2

all position and heading harmonics set
to zero

= HHC input shows 4/rev behavior as
expected

B85
al
i i i i
1] wld /2 3 2x T S 32T Tld= 2

5'5_\/\/‘\/\/\

! A/\/\/\

\VAVAVAVA

| A2|muth angle W [deg]
HHC input to eliminate vibrations at CG



Flapping-Tail Airplane

Simulation Model

= Flapping-tail concept airplane representative of
a Boeing 737-800
= Horizontail tail subjected to oscillatory motion
QPitching a(t) = A, sin(wt + ¢,)
QPlunging h(t) = A4y, sin(wt + ¢p)
QFlapping 6(t) = Ags sin(wt + ¢g)

Boeing 737-800

= Longitudinal dynamics Pitching
U] [ —qw—gsinf8 1 [X(x,t)/m’ l ,{ Pivot
W qu + g cos 0 Y(x,t)/m . - h Flaobi
| ( apping
1= 0 +[M(x, 0)/1 .. Pivot
6 q 0 I.-f" ,. T—
Lxd lucos@ +wsingd 1L 0 ] — /¥

= 5 states + 0 control inputs
QStates: x = {fuw q 0 x}

Diagram of oscillating tail



Flapping-Tail Airplane

Trim Solution

= Objective: find periodic trim at 780 ft/s %Fiéiiii\ /\/—\

= Harmonics retained ’

QUp to 2"d state harmonic (N = 2) %3“: /—\

= 25 unknowns vs. 25 constraints = OK! et o e e
= Vibration level prediction E/—\ —

o o1 02 03 04 05 06 07 08 1%} 1

dFlapping tail plane: 0.5 g

Typical airliners: 0.01 g gl /—\

DHelicopters: 0.05 - 0.1 g 0 01 02 03 04 05 06 OF 08 09 1

0.5
=
| S ) CI—
.
- /\ -

o 51} 0.1 0.2 0.3 04 05 0.6 07 08 09 1
Nondimensioanl time, t/T

Not Comfortable

Periodic trim solution
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1. Developed a numerical method for determining the periodic
state and control solutions of nonlinear time-periodic systems

dHarmonic balance revisitation that employs high-order LTI models of
the vehicle dynamics

Based on harmonic decomposition
dDoes not rely on state transition matrices
dSimultaneously solves for the approximate higher-order LTI dynamics

Can be used to compute the high-harmonic control inputs that
attenuate arbitrary state harmonics

2. Algorithm applications

dDevelopment of advanced flight control laws that attenuate certain
state harmonics

dPrediction of loads and vibrations



Broader Implications

Trim Non-Linear Time-Periodic (NLTP) System \

» Find states and controls that result in periodic orbit \
~

Obtain Linear Time-Periodic (LTP) System

= Linearization schemes

Transform LTP system into higher-order Linear Time Invariant (LTI) system
= Harmonic Decomposition
= Stability Analysis

greddeurﬁfﬂ = Reduce states that cannot be observed/measured

Harmonic Control Design
= Enhance stability/meet desired response characteristics
= Minimize arbitrary state/output harmonics

J
Model Order Reduction }

Georgia |
Tech)
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Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics

Ffowcs Williams-Hawkings Equation

V2p'(x 1) = 5 [Q6(N] = 5 [FS(NI+ 5 [Ty HP))

\ J \

|

| Y '
— — 4 N\ ;:
= = ——

—— i

—_— ——
ST

Thickness Loading Quadrupole
displacement of fluid accelerating force distribution All volume sources,
generates sound generates sound non-linear effects

(includes BVI noise) nonuniform sound speed

% 3))))

Courtesy of K. S. Brentner



Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics

Flight Simulator
Fan of Aircraft | Rotor Flow
o State and Loads
Motion l|e
I Model
Control | Swashplate .
System Angles
| Main Rotor I
Module High-Fidelity Airloads
I Y
Tail Rotor )
" Module S I Noise
[ I Prediction
Other
Modules

Courtesy of K. S. Brentner and Mrunali Botre



Linear Time-Invariant Models of Rotorcraft Flight Dynamics, Vibrations, and Acoustics

Include vibration and aeroacoustic as output
of NLTP dynamics

Derive high-order LTI models for use in
vibrations and acoustic predictions
Drastically abate computation time

Develop noise-abating control laws based on
LTI system theory - powerful

Noise on urban areas (UAM)

Cabin noise

VLRCOE (NASA): coordinated task with K.S.
Brentner and J.F. Horn

E. Grennwood (PSU)

FAA Center of Excellence (ASCENT)
SBIR/STTR (ART, CDI, Craft Tech)

Z [Ibs]

| Non-linear = = = Harmonic Decomposition New Method‘
1000 2000
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900 ih — 1000 b1
1 R b 5
n:'-l E hn.-}l?;:;
800 A"::q 0 0 =A:‘.f?ﬂ::;:“.’::.--:;.‘:::;:'.vv—"""’ ——
L1 TT e ve— =i 1
700 ] “ FVrveea—y 1000 ' i
600 I' I
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1 2 3 4 0 1 2 3 4
o . 2000} 4.
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L 2000
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1 2 3 4 0 i 2 3 4
4
{5 R0 500
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{ - E 18! 't o
460} 1N, 7 o Oopsy 4
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= :
1.65 -500

1 2 3
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4

Preliminary results from
novel algorithm



Stability and Control of Flapping-Wing Flight

Extend proposed method to more
complex FWMAYV models including
unsteady aerodynamics states

Assess stability of wide spectrum of bio
flyers, especially those with small time
scale separation

Compare with averaging methods
Perform control design based on high-
order LTI systems that accounts for
higher harmonics

ONR (Marc Steinberg)
NSF DCSD
H. Taha (UCI)

R, T
Lo i Cd PME e IVEDY
S . gt
LA el L
<~
e

Crane Fly Orchid Bee Parasitic Wasp

Hawk Moth T Bumblebee I Fruit Fly
10’ 102

Flapping frequency [HZ]

103

Flapping Frequency for Several Biological Flyers



Linear Time-Invariant Approximations of Spacecraft Formation Dynamics

Relative dynamics of spacecraft in
elliptical orbits is time-periodic

Could approximate with high-order LTI
systems

Forcing freq. changes within one periodic
orbit (true anomaly time derivative)

Extend harmonic decomposition to
systems with periodically-varying forcing
frequencies

Perform control design based ofn high-
order LTI systems

P. Singla, R. Melton (PSU) M. Lovera (PoliMi)




Thank you

Questions?
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