Networked Flight Simulation and Control Laboratory

ENGINEERING

AE Day April 9, 2021

UMBERTO SAETTI Assistant Professor Department of Aerospace Engineering

Introduction

Presenter's BioBackground and Motivation

Laboratory Vision

- Approach
- **D**Equipment
- Simulation Models
- □Configuration

Intended Research

Linearized Models and Control of Rotorcratf Noise
 Identification of Time-Periodic Aerospace Systems
 Neural ODEs
 Dynamics and Control of Flapping-Wing Flight
 Dynamics and Control of eVTOL Vehicles

Presenter's Bio

Education

Penn State

- Ph.D., M.Sc. Aerospace Engineering (2019, 2016)
 M.Sc. Electrical Engineering (2017)
- Politecnico di Milano (Italy)
 B.Sc. Aerospace Engineering (2014)

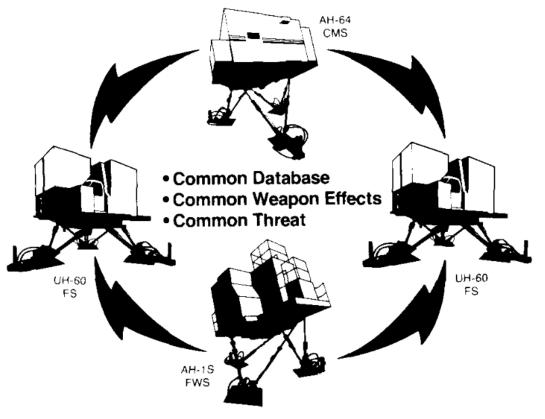
Research Experience

- June 2021: Assistant Professor (Auburn University)
- 2019-Present: Postdoctoral Fellow (Georgia Tech)
- 2015-2019: Graduate Research Assistant (Penn State)
- 2018: Visiting Scholar (U.S. Army ADD, NASA Ames)

Research Field

Flight Dynamics & Controls, System ID, Time-Periodic Systems
 Rotorcraft (helicopters, eVTOLs, UAS)
 Flapping-wing flight (insects/birds, flapping-wing MAVs)
 Fixed-Wing Aircraft (flapping-tail concept aircraft)

Dr. Umberto Saetti

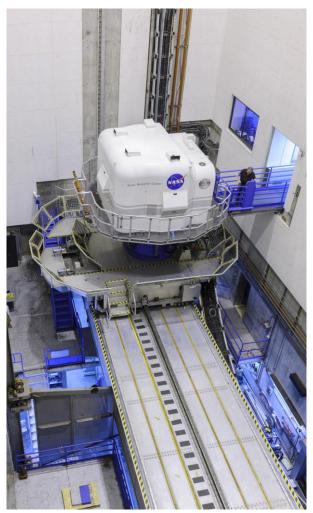

Incoming Assistant Professor Departmentof Aerospace Engineering Auburn University Email: <u>saetti@auburn.edu</u> Web: <u>umbertosaetti.com</u>

Background and Motivation

Background

- Simulation networking started in the 1980's
 DARPA SimNet [Miller and Thorpe 1995]
 MULTISIM [George et al. 1989]
- Used for <u>mission rehearsal</u> and <u>team training</u> in military operations
- Advantages
 - □ Linked simulators can be <u>etherogeneous</u>
 - □ Simulator need <u>not</u> being <u>co-located</u>
 - ❑ Simulation units can be added and removed → <u>flexible</u>
- Allows for <u>multi-pilot/aircraft operations</u>
 - □ Aerial refueling
 - □ Cooperative slung load
 - □ Air combat
 - □ Air traffic management
- Seldom used for research

Link Flight Simulation Division's Multiple Networking (MULTISIM) [George et al. 1989]



Background and Motivation

Motivation

Past approaches

- Projected screens + large motion bases
- □ Realistic physical cockpits
- High acquisition, maintenance, and operation cost
- □ Typically government initiatives

Vertical Motion Simulator (NASA Ames)

Background and Motivation

Motivation

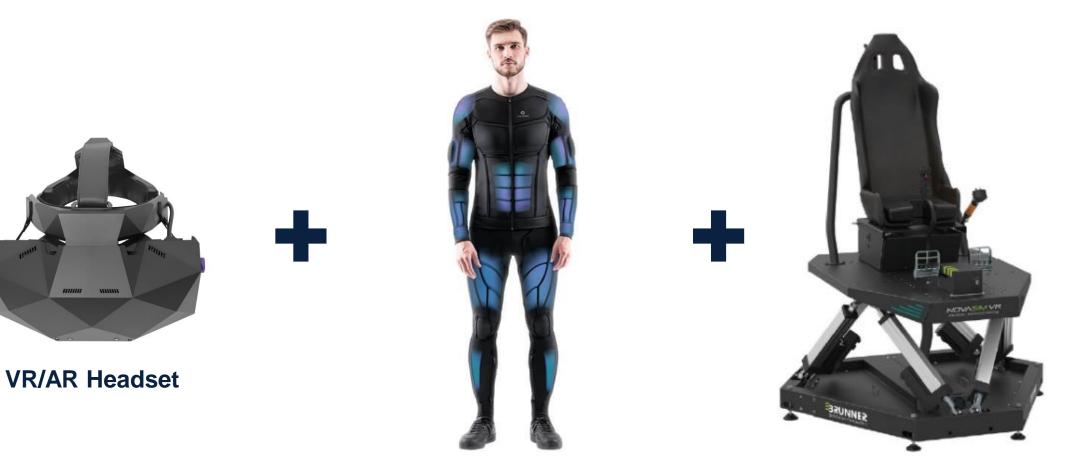
Past approaches

- Projected screens + large motion bases
- Realistic physical cockpits
- High acquisition, maintenance, and operation cost
- □ Typically government initiatives
- Advent of Virtual Reality (VR)
 - Eliminates need for large projected screens/physical cockpit
 - Reduces size and weight of motion platform
 - ❑ Lower mass/inertia → Increased motion bandwidth and range
 - □ Lower cost/size → Affordable for academic research
 - □ 360° visual environment

Brunner Elektronik NovaSim VR Simulator

Introduction

Presenter's BioBackground and Motivation


Laboratory Vision

- Approach
- **D**Equipment
- Simulation Models
- □Configuration

Intended Research

Linearized Models and Control of Rotorcratf Noise
 Identification of Time-Periodic Aerospace Systems
 Neural ODEs
 Dynamics and Control of Flapping-Wing Flight
 Dynamics and Control of eVTOL Vehicles

Haptic Feedback Pilot Suit Motion-Base Simulator

Simulation Unit #1

((

Central Computing Unit

Simulation Unit #2

Multi-Purpose

- Can interface w/ MATLAB, Flightlab, Julia, etc.
- Can simulate different cockpit graphics

Reconfigurable

- Fixed-wing (GA + jet) + rotorcraft controls
- Can implement motion cueing algorithms
 Modular
- Can link multiple units together
 Enhanced Motion Cueing
- Low mass/inertia → Increased motion bandwidth and range

Immersive

- VR provides 360° visual environment
- Look-down capability
- Pilot can see its hands and interact with cockpit
- Haptic feedback (force-feel controls + suit + gloves)

Broad Research Topics

- Fundamental research on VR/AR
 - Piloted flight simulation
 - Handling qualities evaluation
- Development and testing of advanced flight control systems
- Novel cueing systems and algorithms
 - Tactile
 - □ Haptic (force-feel controls and/or suit)
- Multi-pilot/aircraft operations
 - □ Aerial refueling
 - Cooperative slung load
 - □ Air combat
 - □ Air traffic management
- Simulation of high-acceleration flight w/ lowacceleration motion feedback
- Human-machine interaction
- Development of pilot models

Equipment (Cont'd)

Motion Base + VR/AR Headset 6-DoF Motion Platform

- Max payload: 660 lb (300 kg)
- Displacement and velocity
 - □ **Heave**: ±185 mm, ±600 mm/s
 - □ **Surge**: ±240 mm, ±600 mm/s
 - □ **Sway**: ±240 mm, ±600 mm/s
 - **Roll, Pitch, Yaw**: $\pm 30 \text{ deg}$, $\pm 120 \text{ deg/s}$

Visual System

- XTAL 8k
- Display
 - □ Resolution: 3840x2160 (4K) per eye
 - □ 180 deg field of view
 - □ Refresh rate: 75 hz @ 4K per eye
- Hand Tracking
 - Ultraleap Motion Rigel
 - □ 170 deg circular viewing angle
- Eye tracking @ 100 Hz

Motion-Base Flight Simulator

VR/AR Headset (XTAL 8K)

Equipment (Cont'd)

Haptic Feedback Pilot Suit + Gloves Pilot Suit

- Haptic system / NMES
 - □ 80 electrostimulation channels
 - □ 114 electrodes
- Biometry
 - □ Electrocardiography
- Motion tracking
 - IMU 9 axes and 6 axes modes
 - 10 internal motion capture sensors
- Connectivity
 - □ Wi-Fi 2.4 ghz

Haptic Gloves

Sensoryx Haptic Gloves

TESLASUIT

Simulation Models

ROtorcraft Simulation Engine (ROSE)

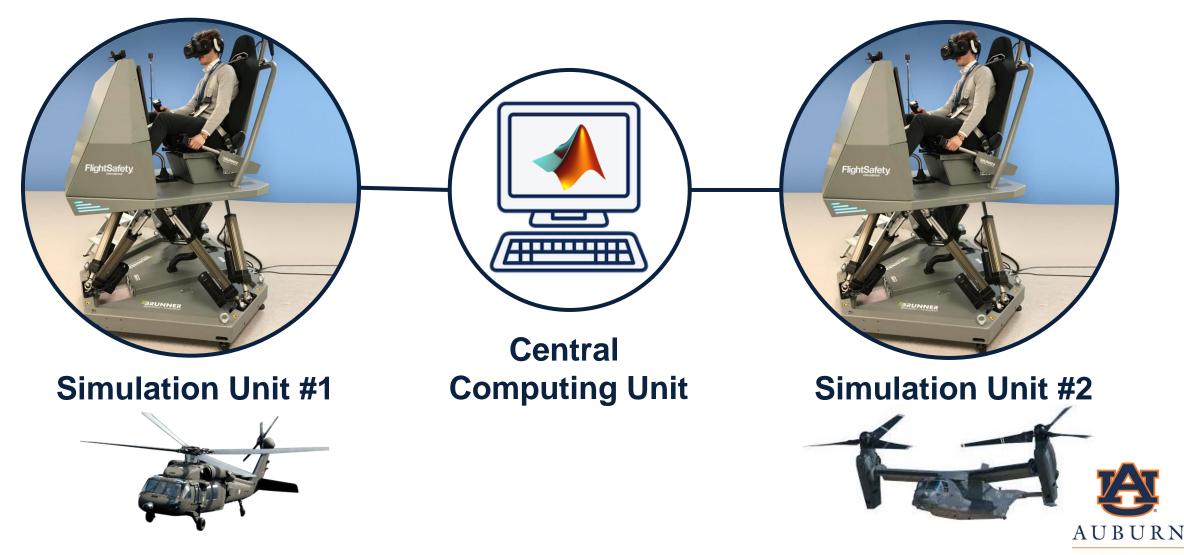
- Versions available
 - 🗆 julia
 - 🗖 📣 MATLAB°
- Current Models
 - □ Simple Helo (UH-60, Bell 430)
 - **ARMCOP** (UH-60, AH-1, Bell 430)
 - GenHel (UH-60)
 - □ GenHel (UH-60) + PSU Free Wake
- Other Models

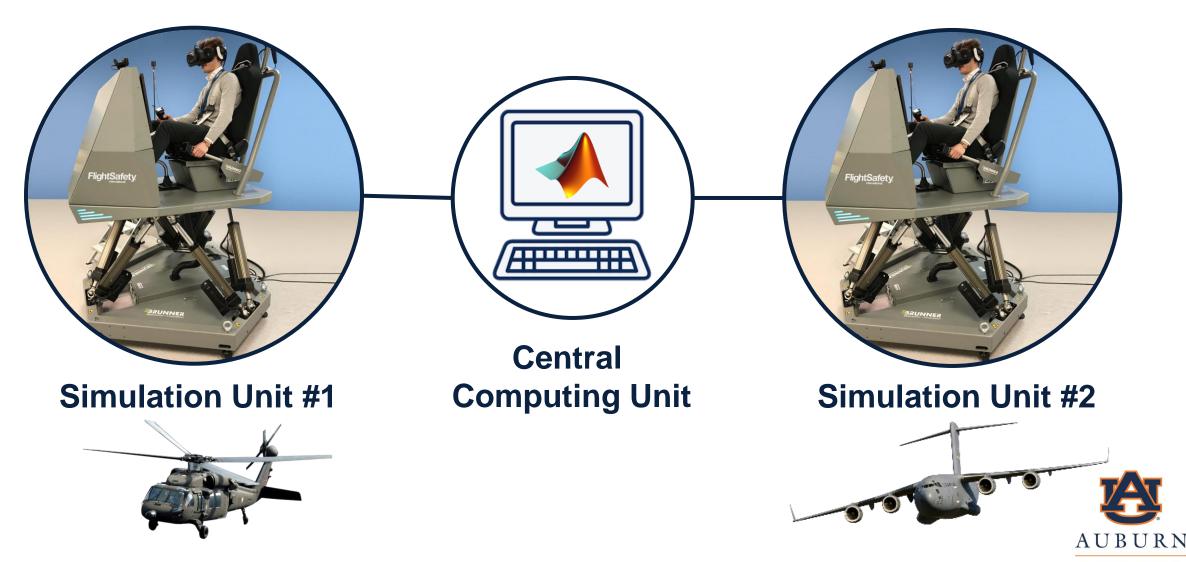
□ **F-16**

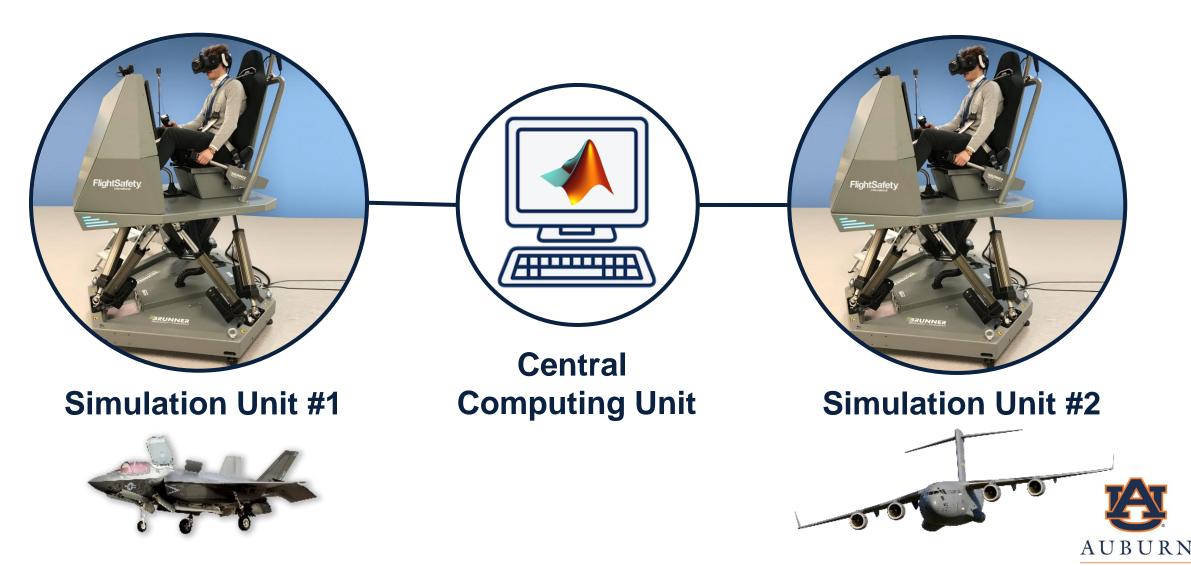
- □ Aeroacoustics Solver (Marching
 - Cubes)
- Graphics
 - □ X-Plane

UH-60 Black Hawk

Bell 430


AH-1 Cobra


F-16 Fighting Falcon


Configuration

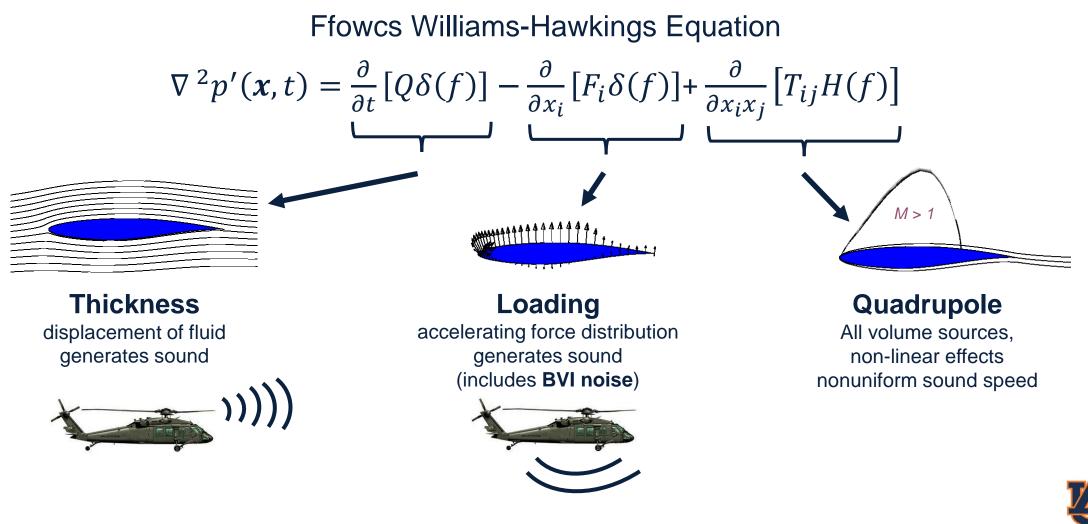
Configuration (Cont'd)

Configuration (Cont'd)

Introduction

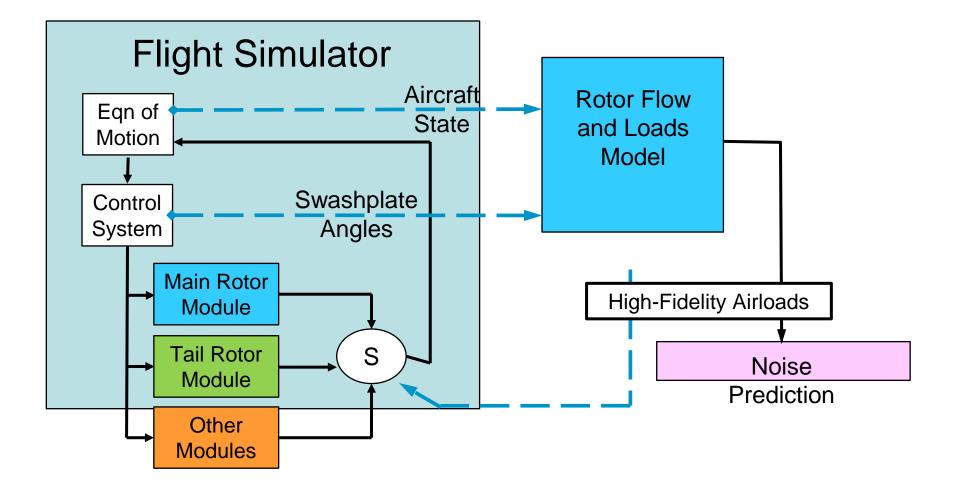
Presenter's BioBackground and Motivation

Laboratory Vision


- Approach
- **D**Equipment
- Simulation Models
- □Configuration

Intended Research

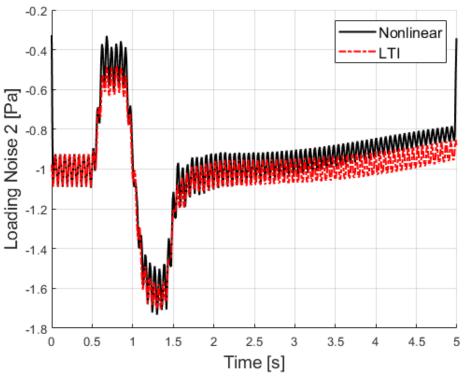
Linearized Models and Control of Rotorcratf Noise
 Identification of Time-Periodic Aerospace Systems
 Neural ODEs
 Dynamics and Control of Flapping-Wing Flight
 Dynamics and Control of eVTOL Vehicles


Linear Models and Control of Rotorcraft Noise

Courtesy of K. S. Brentner

Linear Models and Control of Rotorcraft Noise

Courtesy of K. S. Brentner and M. Botre


Linear Models and Control of Rotorcraft Noise

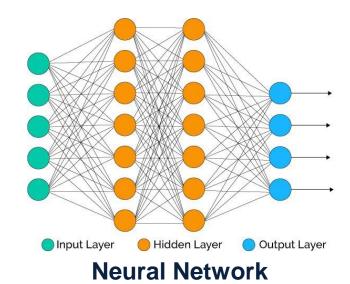
Ongoing Work

- Developed methodology to:
 - Include rotor noise as output of Non-Linear Time-Periodic (NLTP) system
 - Linearize coupled flight dynamics and acoustics
- Derive high-order LTI models for use in noise predictions

Future Research

- <u>Real-time</u> piloted simulations of coupled flight dynamics, free-wake, and acoustic
- Development of noise-abating flight control laws
 - Community noise (multiple rotorcraft)Cabin noise
- Haptic cueing of noise

Nonlinear vs. LTI system for a longitudinal cyclic doublet


Neural ODE Applications to Aerospace Vehicles

Motivation

- Neural networks recently formulated as Ordinary Differential Equations (ODE's)
- Chen. R.T.Q., Y. Rubanova, J. Battencourt, D. Duvenaud, "*Neural Ordinary Differential Equations*", Neural INPS, 2018

Future Research

- Extend neural ODE's to aerospace vehicles applications
- Propose as an alternative to system ID
- Model matching with structured models
- Identification of linear systems

UH-60 Back Hawk

F-16 Fighting Falcon

Identification of Linear Time-Periodic (LTP) Systems from Rotorcraft Flight Test Data

Motivation

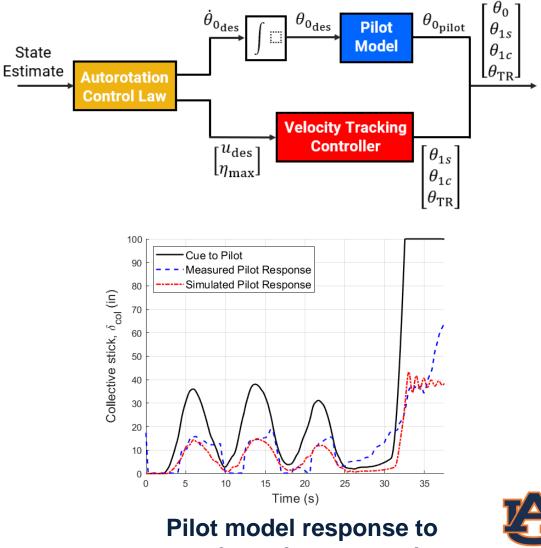
- LTP identification for rotrcraft application in its infancy
- Current methods can only identify harmonics multiple of N_b/rev
- Subspace ID shows promise for LTP system ID

Objectives

- Extend subspace ID to rotorcraft applications
 - Simulation data
 - □ Flight-test data
- Control design based on flight-identified LTP systems
- Future Vercial Lift (FVL)

Sikorsky SB-1 Defiant (Army FVL)

Bell V-280 (Army FVL)


Control System Design for Pilot Cueing

Motivation

- Pilot may not be able to track desired control inputs from control system
- Expert flight control system for autorotation is an example
- Need for control design that incorporates pilot dynamics

Objectives

- Develop control system design for cueing that account for pilot dynamics
- Study cueing methods for specific tasks
 Autorotation
 Shipboard landing
 - □ Carefree maneuvering
- Innovative cueing methods and test

cues for safe autorotation

Dynamics and Control of eVTOL Vehicles

Past Work

- Developed 6-DoF Simulation Models
- Propeller-driven rotor inflow model
- Assessed dynamic stability
- Flight Control Design
 - Explicit Model Following (EMF)
 - Dynamic Inversion (DI)
- Autorotation

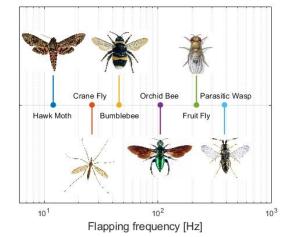
Future Research

- Piloted flight simulations
- Handling qualities evaluations
- Assess aerodynamically-induced noise

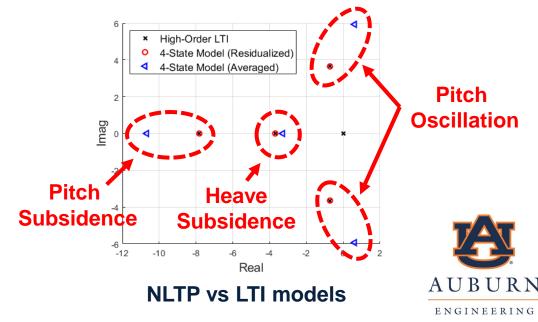
Sponsor

• Vinati s.r.l.

F-Helix eVTOL Concept Aircraft (Legacy)


Stability Analysis and Control of Biological/Bio-inspired Flight

Motivation


- No generalized method to describe the dynamics of flapping-wing flight
- Averaging methods need time-scale separation between
 - □ Forcing motion (flapping)
 - □ Fastest rigid-body mode

Objectives

- Extend harmonic decomposition methodology to flapping flight
- Analyze dynamic stability of wide spectrum of biological flyers
- Develop flight control laws that account for higher-order dynamics
- Demonstrate flight control laws in simulation and experimental studies

Flapping Frequency for Several Biological Flyers

Thank you

Questions?

